Smart Posterboard: Multi-modal Sensing and Analysis of Poster Conversations

Tatsuya Kawahara
(Kyoto University, Japan)

http://www.ar.media.kyoto-u.ac.jp/crest/

JST CREST Project (2009-2014)

• PI: Prof. Tatsuya Kawahara (Kyoto University)

• Kyoto University
 — Prof. Yuichi Nakamura (Video Processing)
 • Mr. Hiromasa Yoshimoto
 — Prof. Takashi Matsuyama (Computer Vision)
 • Dr. Tony Tung
 — Prof. Sadao Kurohashi (Natural Language Processing)
 • Dr. Yugo Murawaki

• Nara Institute of Science & Technology
 — Assoc. Prof. Hiroshi Saruwatari (Acoustic Processing)
Why Poster Sessions?

• Norm in conferences & open-houses
 – But not recorded at all,
 while many lectures are now being recorded
• Interactive & multi-modal
 – A small audience can make questions at any time
 – Gaze and backchannels play an important role
• Long and redundant \rightarrow repeated presentations
 \rightarrow need for efficient browsing of the recordings

Smart Posterboard
[Demo@ICASSP2012]

All sensors are attached to large (65’’) LCD
Goal (Application Scenario)

Modeling human interaction behaviors

• A new indexing scheme of conversation archives
 – Review of QA
 – Portion difficult for audience to follow (.presenter)
 – Interesting spots (presenter & third-party viewers)
 “People would be interested in what other people were interested in.”

• A model of intelligent conversational agents (future topic)

Problems & Tasks

• Multi-modal signal-level sensing
 – Face detection, eye-gaze detection
 who came to the poster
 – Speech separation, speaker diarization
 what they said

• High-level indexing using multi-modal behaviors
 – Interest level estimation
 which part they were attracted
 – Comprehension level estimation
 which part was difficult to follow
Recording of Poster Conversations with Smart Posterboard

65’ LCD Screen + Microphone Array + Cameras

Setting of Poster Conversations

- Presentation of research overview
 - 4 or 8 slides of rather independent topics (=slide topics)
 - Easy to annotate interest & comprehension level
- Audience of two persons
 - Young researchers, who are not familiar with the presenter and the topics
- Duration: 20-30 minutes
- 10 sessions → 58 slide topics
Transcriptions & Annotations of Poster Conversations

- Manual transcription of speech
 - IPU, clause unit
 - Fillers, Backchannels (reactive tokens), Laughter
- Non-verbal behavior labels (almost automated)
 - Eye-gaze (to other person & poster)
 - eye-track recorder (initially for ground-truth)
 - Kinect sensor + head-orientation tracking
 - Nodding...non-verbal backchannel
 - accelerometer
 - Kinect sensor + head-orientation tracking
Multi-modal Sensing

[signal] [behavior] [mental state]

Video
Eye-gaze (Head direction)
Nodding
Backchannel (Reactive token & Laughter)
Utterance

Audio

Automate

interest
comprehension

Multi-modal Sensing

- Challenges in poster conversations
 - Multiple persons (+replacing)
 - Moving
 - Talking at distance (+background noise)
 ... No prior work in acoustic research!!

- All sensors are attached to posterboard
 - 19-channel microphone array, Kinect
 - [portable version] Kinect only (for 1 person)
Behavior Sensing by Multi-modal Processing

Image Processing
- Person (Face) detection
- Gaze detection (head direction)

Audio Processing
- Speech separation
 - Beam-forming (DS)
 - Separation filter (ICA)
- Speaker diarization
 - Speaker detection (DOA)
 - Speech detection (VAD)
- Prediction of interest & comprehension level

Gaze Detection
- Gaze ← Head direction tracking
 - Difference <10 degree, in poster conversations
- Procedure
 1. Face detection...color & TOF information
 2. Head model estimation...3D model
 3. Head tracking...particle filter
 4. Identification of gaze object: poster or participants
- Online & real-time processing with GPU
- Accuracy of 90%
 (cf.) Nodding is also detected in this process
Speech Separation & Speaker Diarization

- Separation & enhancement of distant speech
 - Beam-forming to speakers
 - Noise suppression via BSSA
- Speaker diarization
 - DoA estimation
 - Voice Activity Detection on enhanced speech
 - Presenter’s speech: recall & precision: 85%
 - Audience’s speech: recall: 70%, precision: 85%

Detection of Reactive Tokens & Laughter

- GMM classification
- Non-lexical reactive tokens
 - 「へー」「あー」「ふーん」
 - Characteristic prosodic patterns
 - Recall: 30%, Precision 80%
 → apparent (=significant) tokens can be detected
- Laughter
 - Recall & Precision: 70%
 - Laughter is not frequent and often used for relaxing in poster conversations
Scheme of Multi-modal Sensing & Prediction

[signal] [behavior] [mental state]

Eye-gaze (Head direction)
Nodding
Backchannel (Reactive token & Laughter)
Utterance

Video
Audio

Definition of Interest & Comprehension Levels

• “gold-standard” annotation: ask every participant to mark for each slide topic after the session
 – Not possible in a large scale
 – Subjective and may not be so reliable

• Focus on speech acts
 – Prominent reactive tokens [Kawahara IS2010&IPSJ11]
 – Questions raised by audience
 “audience ask more questions when they are attracted.”
 • Confirming questions: to make sure understanding
 • Substantive questions: asking on what was not explained
Proposed Scheme for Prediction of Mental States via Relevant Speech Acts

[signal] [behavior] [speech act] [mental state]

Video

Eye-gaze

Nodding

Backchannel

prominent
Reactive
Token

Question
(substantive)

Question
(confirming)

interest

comprehension

• Observable reaction
 • Presumably related with the mental states

Relationship of Reactive Tokens and Interest Level [Kawahara IS2010]

- Non-lexical
- Never used for acknowledgment (“wow”)
- Prominent prosodic patterns
- Signal strong reaction

<table>
<thead>
<tr>
<th>Token</th>
<th>prosody</th>
<th>interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>へー</td>
<td>duration</td>
<td>○</td>
</tr>
<tr>
<td>へ:</td>
<td>F0max</td>
<td>○</td>
</tr>
<tr>
<td>へ:</td>
<td>F0range</td>
<td>○</td>
</tr>
<tr>
<td>へ:</td>
<td>Power</td>
<td>○</td>
</tr>
<tr>
<td>あー</td>
<td>duration</td>
<td>○</td>
</tr>
<tr>
<td>あ:</td>
<td>F0max</td>
<td>○</td>
</tr>
<tr>
<td>あ:</td>
<td>F0range</td>
<td>○</td>
</tr>
<tr>
<td>あ:</td>
<td>Power</td>
<td>○</td>
</tr>
<tr>
<td>ふーん</td>
<td>duration</td>
<td>○</td>
</tr>
<tr>
<td>ふ:</td>
<td>F0max</td>
<td>○</td>
</tr>
<tr>
<td>ふ:</td>
<td>F0range</td>
<td>○</td>
</tr>
<tr>
<td>ふ:</td>
<td>Power</td>
<td>○</td>
</tr>
</tbody>
</table>

(p<0.05)
Interest & Comprehension Level according to Question Type (4 sessions)

More questions → higher interest level
Confiming questions → low comprehension

Definition of Interest & Comprehension Level

- **High interest level**
 - questions of any types
 - prominent reactive tokens
- **Low comprehension level** (in spite of interest)
 - confirming questions

Useful in reviewing the poster sessions
- Interesting spots (presenter & third-party viewers)
- Portion difficult for audience to follow (presenter)
Proposed Scheme for Prediction of Mental States via Relevant Speech Acts

[signal] [behavior] [speech act] [mental state]

- Eye-gaze (head direction) - Nodding -
- Backchannel

prominent Reactive Token
Question (substantive)
Question (confirming)

intercourse
comprehension
predictable??
(cf.) Can human?

Relationship between Backchannels and Questions

- Exclude prominent reactive tokens...less than 20%
- Majority are “hai” (“yeah”, “okay”)
- Frequency (count/utterance) in each topic segment

<table>
<thead>
<tr>
<th></th>
<th>Confirming</th>
<th>Substantive</th>
<th>Entire set</th>
</tr>
</thead>
<tbody>
<tr>
<td>backchannel</td>
<td>0.53</td>
<td>0.59</td>
<td>0.42</td>
</tr>
</tbody>
</table>

- More backchannels
 - more questions, especially substantive questions
Relationship between
Eye-gaze (at presenter) and Questions

- Frequency & duration of eye-gaze in each topic segment
 - In most of time, participants look at poster
 - Eye-gaze at presenter has a reason and effect

<table>
<thead>
<tr>
<th></th>
<th>Confirming</th>
<th>Substantive</th>
<th>Entire set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaze occurrence</td>
<td>0.38</td>
<td>1.02</td>
<td>0.64</td>
</tr>
<tr>
<td>Gaze duration</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
</tbody>
</table>

- Confirming questions \Leftarrow increase in gaze at poster
 - more focused on poster, trying to understand
- Substantive questions \Leftarrow increase in gaze at presenter
 - try to attract presenter’s attention for taking a turn

Machine Learning for Prediction

- Features
 $F = \{f_1, f_2, f_3\} = \{\text{backchannel, gaze occurrence, gaze duration}\}$
- Naive Bayes classifier
 $$p(c \mid F) = p(c) \prod p(f_i \mid c)$$
- Estimation of $p(f \mid c)$
 - histogram quantization (3 or 4 bins)
- Circumvent estimation of model parameters
- Leave-one(session)-out cross validation using 10 sessions
Prediction of Topic Segments involving Questions and/or Reactive Tokens
(=high interest)

<table>
<thead>
<tr>
<th></th>
<th>F-measure</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline (chance rate)</td>
<td>0.49</td>
<td>49.1%</td>
</tr>
<tr>
<td>(1) backchannel</td>
<td>0.59</td>
<td>55.2%</td>
</tr>
<tr>
<td>(2) gaze occurrence</td>
<td>0.63</td>
<td>61.2%</td>
</tr>
<tr>
<td>(3) gaze duration</td>
<td>0.65</td>
<td>57.8%</td>
</tr>
<tr>
<td>combination of (1)-(3)</td>
<td>0.70</td>
<td>70.7%</td>
</tr>
</tbody>
</table>

• Backchannel & gaze features lead to significant improvement
• Combination of both results in the best accuracy

Identification of Question Type of Confirming vs. Substantive
(=comprehension level)

<table>
<thead>
<tr>
<th></th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline (chance rate)</td>
<td>51.3%</td>
</tr>
<tr>
<td>(1) backchannel</td>
<td>56.8%</td>
</tr>
<tr>
<td>(2) gaze occurrence</td>
<td>75.7%</td>
</tr>
<tr>
<td>(3) gaze duration</td>
<td>67.6%</td>
</tr>
<tr>
<td>combination of (1)-(3)</td>
<td>75.7%</td>
</tr>
</tbody>
</table>

• All features lead to improvement
• Gaze occurrence alone achieves the best accuracy
• Need to parameterize backchannel patterns?
Summary

- Multi-modal signal-level sensing
 - “who came to the poster and what they said”
 - Combination of multi-modal information
- High-level indexing using multi-modal behaviors
 - Interest & comprehension level
 - using multi-modal features (backchannel & eye-gaze)
 - chance rate (50%) → over 70%
- Ongoing work
 - Tight integration of gaze and speech information
- Implemented on smart posterboard system
 → poster session browser